
1

IoT Data Prefetching in Indoor Navigation SOAs

A. KONSTANTINIDIS, P. ERACLEOUS, Z. GEORGIOU, University of Cyprus
D. ZEINALIPOUR-YAZTI, Max Planck Institute for Informatics and University of Cyprus
P. K. CHRYSANTHIS, University of Pittsburgh

Internet-based Indoor Navigation Service-Oriented Architectures (IIN-SOA) organize signals collected by
IoT-based devices to enable a wide range of novel applications indoors, where people spend 80-90% of their
time. In this paper, we study the problem of prefetching (or hoarding) the most important IoT data from an
IIN-SOA to a mobile device, without knowing its user’s destination during navigation. Our proposed Grap
(Graph Prefetching) framework structurally analyzes building topologies to identify important areas that become
virtual targets to an online heuristic search algorithm we developed. We tested Grap with datasets from a real
IIN-SOA and found it to be impressively accurate.

Additional Key Words and Phrases: Internet-of-Things, Indoor Navigation, Mobile Prefetching

ACM Reference format:
A. Konstantinidis, P. Eracleous, Z. Georgiou, D. Zeinalipour-Yazti, and P. K. Chrysanthis. 2017. IoT Data
Prefetching in Indoor Navigation SOAs. ACM Trans. Internet Technol. 1, 1, Article 1 (November 2017), 20 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Internet of Things (IoT) refers to a large number of physical devices being connected to the Internet
that are able to see, hear, think, perform tasks as well as communicate with each other using open
protocols [2, 3, 16, 32]. IoT enables the development of smart applications in important domains,
such as transportation, healthcare, industrial automation, emergency response and business, having
significant impact on the quality of people’s life and the growth of the world’s economy and
security [2]. Studies showed that a typical family in the developed world owns about 5-10 internet-
connected devices, such as smartphones, smartTVs, smart-home devices, etc., and according to
Gartner1 it is expected that this number will increase to more than 500 smart devices by 2022. In
order to realize this potential growth, emerging technologies, innovations and service applications
need to grow proportionally to match market demands and user needs [11].

The omni-present availability of sensor-rich smartphones along with the fact that people spend
80-90% of their time in indoor environments has recently boosted an interest around the so called
Internet-based Indoor Navigation Service-Oriented Architectures (IIN-SOA) [34]. These comprise
of indoor models, such as floor-maps and points-of-interest, along with IoT-based raw data, such
as wireless, light and magnetic signals, used to localize users. There are numerous IIN-SOAs ([34]
provides a taxonomy), including Skyhook, Google Indoor Maps, Infsoft, Indoo.rs, IndoorAtlas and

1Sept. 08, 2014, Gartner Inc., URL: https://goo.gl/c6VTWG

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
© 2017 Association for Computing Machinery.
1533-5399/2017/11-ART1 $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1. Publication date: November 2017.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://goo.gl/c6VTWG
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1:2 Konstantinidis, A. et al.

our in-house Anyplace IIN-SOA2. There is a wide range of domain-specific IIN-SOAs, in domains
such as in-building guidance and navigation, inventory management, marketing and elderly support
through Ambient and Assisted Living [30]. Collectively, these are expected to improve location-
awareness providing thus smart answers to a variety of smart transportation, smart houses and smart
cities scenarios and having a remarkable role on the evolution of intelligent decision making that can
improve they quality of our lives. For example, consider a smart IIN-SOA for elderly support that
provides instant emergency notifications to caregivers when elderly people leave their bed at night
without returning (thus being in help) or a smart IIN-SOA for an airport that can predict future traffic
patterns in the terminals and allocate resources accordingly.

A major problem with collected IoT data in IIN-SOA is that this data changes very dynamically,
requiring users to continuously synchronize their state with the IIN-SOA, in order to enjoy an
accurate localization service. For instance, consider a hypothetical scenario related to the US Library
of Congress, where a user u aims to interactively carry out content-based search, exploration
and navigation (i.e., the user is interactively exploring the space in a “target-less” manner). The
oblivious solution is to provide a traditional IIN-SOA (s) that can perform the queries in the cloud.
Unfortunately, Internet connectivity in indoor spaces is intermittent due to inadequate Wi-Fi coverage,
blockage of 3G/LTE signals, etc. As such, u cannot reach s on an ongoing basis to refine upcoming
search and navigation targets as these emerge. An alternative to cloud-based search, is to hoard
the complete IoT data on the mobile app of user (i.e., by caching it a priori). Unfortunately, IoT
data is massive and dynamic, making complete hoarding a resource-wasteful, time-consuming and
error-prone solution, due to outdated data. Clearly, there is a need to strike a balance between these
two alternative solutions, the solution of no hoarding and the solution of full hoarding.

In this paper, we study the problem of prefetching (or hoarding) the most important IoT data
blocks from an IIN-SOA s to a mobile user u, without knowing the target of u during navigation. Such
a prefetching functionality is of paramount importance for the maintenance of a reliable IIN-SOA,
because mobile devices suffer from intermittent Internet connectivity. This results in high latencies
for accessing the IIN-SOA and subsequently to location inaccuracies. Our proposed framework,
named Grap (Graph Prefetching), decides which pieces of the IoT data space are required by a
user during navigation in two steps: (i) an offline pre-processing step, named createDG, during
which a target building is structurally analyzed as a graph to identify important areas in a target
building; (ii) an online search step, named Graph-Distance A*-based (GDA) algorithm, during which
these multiple “virtual” targets are iteratively explored using domain-specific indoor heuristics. Grap
results in an intelligent prefetching service that hoards spatial indoor context on the mobile device of
u whenever u has network connectivity. In cases of intermittent connectivity, u localizes itself from
its local hoarded data.

A preliminary formulation of the IoT data prefetching problem has appeared in our previous
work [13]. Our prior work was established on the assumption that historic user trajectories inside
buildings were available to solve this problem efficiently. In practice however, such user trajectories
are hard to obtain due to rising privacy concerns [12] and respective legislation (e.g., EU General
Data Protection Regulation). Additionally, even though the discussion and examples in our paper
only focus on indoor spaces, situated within a building and isolated from the outside world through
some physical door, our propositions can be extended into outdoor spaces as well, which also aim to
support effective offline support for the disconnected workforce. For example, even though Google
Maps maintains centrally public transportation timetables, predicted traffic, satellite or terrain tiles,
labels and description of POIs, none of these are available, at the time of this work, when a user is
operating in offline mode. The IoT data prefetching propositions of this work could therefore provide

2Anyplace, URL: https://anyplace.cs.ucy.ac.cy/

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1. Publication date: November 2017.

https://anyplace.cs.ucy.ac.cy/

IoT Data Prefetching in Indoor Navigation SOAs 1:3

a way for a user to download the most relevant data blocks from the navigation service, providing
full resolution to the available data and taking into account issues of intermittent connectivity and
limited data availability. Overall, our contributions in this work are summarized as follows:

• We propose a generalized framework, named Grap, for prefetching IoT-based location data
that yields high prefetching accuracy and high localization performance under intermittent
network connectivity.

• We propose a Dependency Graph generation technique, named createDG, during which a
target building is structurally analyzed in an offline manner to determine the most significant
parts of a building. We also propose GDA, which is a multi-target Graph-Distance A*-based
algorithm that chases multiple targets iteratively using indoor domain-specific heuristics.

• We evaluate our design with extensive experimentation and analysis on real datasets that
we obtained through an open source indoor navigation architecture (IIN-SOA) that we have
developed over the years and that has won several awards for its accuracy and utility [33].

• We show how Grap has been integrated to an open source IIN-SOA. This exercise has helped
us to validate that our propositions are practical and can be implemented in a real system.

The remainder of the paper is organized as follows: Section 2 provides background details and
related work on IoT-based IIN-SOA, prefetching and graph-based algorithms. Section 3 provides our
system model and formulates the problem. Section 4 presents the Grap framework and describes the
proposed techniques that compose it. Section 5 provides an overview of our real prototype system.
Section 6, presents our experimental methodology and results while Section 7 concludes the paper.

2 BACKGROUND AND RELATED WORK
In this section, we provide background and related work on IoT-based IIN-SOA, prefetching and
graph-based algorithms, upon which our presented techniques are founded.

2.1 IoT-based IIN-SOA and Anyplace
A major characteristic of IoT is the inter-connectivity of things in the network and that the IoT
architecture must ensure their proper operation in both the physical and the virtual world [16].
While this can be achieved by taking into consideration the scalability, extensibility, adaptiveness,
modularity and interoperability of heterogeneous devices, things may move geographically, may need
to communicate in real-time and interact dynamically [28]. Therefore, a Service-oriented Architecture
(SOA) [16, 31], which treats a complex system as a set of well-defined simple objects of subsystems
that can be re-used and maintained individually [31], is a good choice for IoT-demanding features.

An example of an IoT-based IIN-SOA is our own Anyplace [33], which follows a SOA design that
allows to plug-n-play additional modules, either for extending system capabilities - by implementing
new features - or for enhancing user-experience, by improving existing functionalities (e.g., map-
matching and sophisticated data fusion to increase localization accuracy). The public Anyplace
service has to this date supported more than 100,000 real user interactions, with many more users
using its standalone installations. The Anyplace native Android application is composed of the
Navigator and the Logger that can benefit from Wi-Fi fingerprinting [20, 23, 34] available under
this platform. The Logger application enables users to record Wi-Fi readings from nearby Wi-Fi
Access Points (APs) and upload them to our Server through a Web 2.0 API (in JSON). It is used by
volunteers for contributing Wi-Fi data and for crowdsourcing the Radiomaps of buildings [7] (i.e.,
four directional fingerprinting in multiple rounds to remove noise). The Navigator allows users to
see their current location on top of the floorplan map and navigate between POIs inside the building
with high accuracy (i.e., 1.96 meters at the Microsoft Indoor Localization Competition at ACM/IEEE
IPSN’14 [20]). The localization function loc () of Anyplace comprises of the following phases: in

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1. Publication date: November 2017.

1:4 Konstantinidis, A. et al.

the first offline phase, it records the so-called Wi-Fi fingerprints, which comprise of Received Signal
Strength (RSS) indicators of Wi-Fi APs at certain locations (x,y) pin-pointed on a building floor map
(e.g., every few meters). In the second offline phase, the Wi-Fi fingerprints are joint into a NxM
matrix, named the Wi-Fi RadioMap, where N is the number of unique (x ,y) fingerprints and M the
total number of APs. Finally, a user can compare its currently observed RSS fingerprint against the
RadioMap in order to find the best match, either on the server side or in-situ at the smartphone device
after downloading the whole RadioMap, by using known algorithms such as KNN or WKNN [15].

One fundamental drawback of the Anyplace’s final RSS fingerprint comparison step is that users
on-the-move require to communicate with the Anyplace service continuously over a Wi-Fi network,
which negatively affects their localization accuracy, when there is intermittent connectivity [29]. The
alternative of downloading at the smartphone device the massive RadioMap (e.g., WiGLE.net had
5.4 billion unique records by November, 2017) prior the localization, may potentially lead to high
overhead time, waste of limited smartphone battery, as well as high cost due to expensive mobile
data plans. Thus, this study aims at advancing the literature with intelligent prefetching techniques
that allow users to carry out accurate indoor navigation in a target-less manner using only a selective
portion of the IoT-based data residing on the IIN-SOA provider, which provides high performance
(time and network capacity) but also resilience to intermittent connectivity scenarios.

2.2 Prefetching and Mobile Connectivity
Caching is the process of storing data locally, so that future requests for that data can be served
faster. It finds applications in the complete spectrum of the computing memory hierarchy (i.e., from
low-level hardware to high-level software). Prefetching (or Hoarding) on the other hand, is the
process of downloading and then storing data locally in a cache, so that future requests for that data
can be served in the event of a network failure. Prefetching was originally used in File Systems [25]
for optimizing the I/O operations on a disk by caching disk blocks that will be needed in the near
future. File System prefetching was also adopted by network and distributed environments such as
CODA [24], which is a distributed file system that provides novel features such as the disconnected
operation that makes server data available in mobile computing environments when the network
connection is lost. Prefetching is also used in the Web for allowing browsers to pre-load frequently
visited web links and content (like music and videos) in order to re-load them faster and therefore
optimize the web navigation performance [5, 21].

In mobile networks, the connectivity in indoor spaces is often intermittent, referring to the frequent
disconnection of a mobile node in random time intervals. This often occurs due to the following two
reasons [29]: (i) there is a gap between the coverage of two APs and thus the connectivity experienced
by mobile users passing by will likely to be intermittent; and (ii) because of physical obstacles as
well as high mobility patterns of the mobile users. In either case, intermittent connectivity may break
data connections, if the connectivity disruption between a mobile node and an AP is long enough
and the available transfer rate provided is below a certain threshold.

Several techniques have been proposed to tackle the intermittent connectivity problem in mobile
networks such as mobility management [17], cooperative downloading schemes [27], AP deployment
algorithms [36], prefetching [10], routing [35] or combinations of those techniques [29]. Prefetching
systems in mobile networks aim at hiding the frequent disconnections and/or the latency of data
transfers over poor and intermittently connected environments. In particular, a prefetching system
predicts what data an application will request in the future and speculatively retrieves and caches that
data in anticipation of those future needs [10]. All these prior solutions are not directly applicable to
our formulated problem as we both do not have access to historic user data (used for learning and
future predictions) but only data capturing the structural semantics of buildings.

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1. Publication date: November 2017.

IoT Data Prefetching in Indoor Navigation SOAs 1:5

2.3 Graph-based Search
Our proposed Grap (Graph Prefetching) framework uses preprocessed building topology graphs
to search for important areas that have to be prefetched. Graph-search algorithms can be classified
into: Uninformed (Blind) algorithms and Informed search algorithms [19]. Uninformed algorithms
have no domain knowledge of the problem state and traverse the graph by using unsophisticated
approaches that may have only information about the state, the successor function, the goal test
and the path cost. Uninformed search algorithms are characterized by the order in which the nodes
are visited to reach the goal-solution and include approaches such as Random-Walk, Breadth-First
Search (BFS), Depth-First Search (DFS) and Iterative Deepening (ID). Informed search algorithms
on the other hand are characterized by a utility in scanning the solution space to reach the goal. These
algorithms utilize some kind of an evaluation function that either greedily (e.g., BFS), stochastically
assess a set of options (e.g., simulated annealing and hill climbing), or an evaluation function that
assesses the distance of the current solution from a target (e.g., A* heuristic).

However, AI research focuses on simple prediction graph-related problems by applying Machine
Learning (ML) techniques. For example, predicting a sub-structure of a given graph for mobility
prediction of wireless users using Artificial Neural Networks (ANNs) or variants is proposed in [9].
The hard part in ML techniques is training, for example a neural network, with real annotated
location trajectories because such trajectories have to be collected at scale and there are rising privacy
concerns behind massive location tracking of the mobile workforce [12]. In the context of this work,
we designed a framework that proposes an informed-search algorithm that is independent of sensitive
user-centric data and can operate solely based on structural semantics available in building plots (i.e.,
no user data).

3 SYSTEM MODEL & PROBLEM FORMULATION
This section formalizes our system model, assumptions and problem. The main symbols and notation
used in the rest of the paper are summarized in Table 1.

3.1 System Model
We assume a planar indoor area I containing a finite set of locations that are partially covered by a
set of Wi-Fi APs {ap1, ap2, · · · , apM }. Each api has a unique ID (i.e., MAC address) that is publicly
broadcast and passively received by anyone moving in the coverage of api . The signal intensity at
which the ID of api is received at location l is termed the Received Signal Strength (RSS) of api at l ,
where −110 indicates when an api is out of reach. The set of RSS values measured and the ap-IDs
read at a location l is termed fingerprint Vr at time step r of location l .

We further assume an indoor positioning server s that has constructed beforehand a RadioMap
(RM), which is a database of offline fingerprint Vl measured at various locations l ∈ I . Any subset
of RM rows will be denoted as partial RadioMap (RMu

r), requested by some user u at time step
r . Server s uses a localization function loc() to compute from RM (or RMu

r) an estimation λul ′ of
some new unknown location l ′ given the fingerprint Vl ′ . An RMu

r including a set of entries that
are geographically close and surround l allow for a better estimation λul ′ (or λur ′). Therefore, the
fingerprints are spatially grouped into equal-sized blocks at s for facilitating the localization process.

Since we assumed that the arrangement of Wi-Fi APs in I results in partial coverage and weak
RSS at some locations, we can define an RSS threshold θ , below which the data transmission rate is
practically zero. Such a definition will help us to articulate our analytical and experimental arguments
pertinent to intermittent network connectivity. Specifically, client u with a fingerprint Vr at time step
of request r is practically offline if the maximum signal strength maxVr it receives from any covering

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1. Publication date: November 2017.

1:6 Konstantinidis, A. et al.

Table 1. Key Notation and Symbols

Notation Description
I , l Indoor space, Location inside I

api , AP , M Access Point i , Set of all api , |AP |
s , u , U Localization service, User requesting localization, Set of all u
r , R Time step of current localization request, Set of all prior r
Vl ,Vr Fingerprint (RSSs and ap-IDs) at location l (used in offline mapping), Fingerprint at request r

RM , RMu
r RadioMap mapping Vr to l , Partial RadioMap of u at r (|RMu

r |≪|RM |)
lur , λ

u
r , loc() Actual, Estimated location of u computed by loc() at r
θ RSS threshold below which u is considered disconnected from s

Ar , Tr , Cr Point Accuracy, CPU Time and Network Capacity costs for request r
α , K Best Possible Ar at r , Dwell Time (time required to download K data blocks)

api is below threshold θ , i.e., maxVr < θ . Formally, this is captured by the connectedr definition that
follows:

connectedr =

{
0, if maxVr ≤ θ
1, if maxVr > θ

}
(1)

The number of blocks that can be downloaded while being connectedr depends on the amount
of time that the user stays connected at r , denoted as the dwell time. For experimentation purposes,
dwell time is configured to K blocks.

3.2 Research Goal and Metrics

Research Goal. Enable a mobile user to consecutively localize itself accurately and efficiently in an
indoor environment, where connectivity is intermittent, using an IIN-SOA holding RM.

The efficiency of the proposed techniques to achieve the above research goal is measured by
the following client-side metrics: (i) the Point Accuracy achieved by u while localizing; (ii) the
CPU Time required for the localization; and (iii) the Network Capacity for the complete localization
operation.

Definition 3.1. Point Accuracy (Ar) is the Euclidean error distance between the location estimation
λur (i.e., the estimated location over the partial RMu

r) and the actual location lur of user u (i.e.,
the estimated location over the whole RM) at the time step of localization request r , given by:
Ar = |λ

u
r − l

u
r | + α (α is the lower bound localization accuracy achieved by any function loc()).

Definition 3.2. CPU Time (Tr) is the processing time used on u for running the localization function
loc() given a localization request r . This includes the time costs for transmitting/receiving the RM
(or RMu

r) and for executing the loc() function on the mobile device.

Definition 3.3. Network Capacity (Cr) is the total number of messages |RMi | needed on u for
localization request r .

Our research goal can be expressed by the minimization of the following three objective functions:

min FA =
1
|R |

∑
R

Ar ; min FT =
1
|R |

∑
R

Tr ; min FC =
1
|R |

∑
R

Cr (2)

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1. Publication date: November 2017.

IoT Data Prefetching in Indoor Navigation SOAs 1:7

3.3 Baseline Approaches
Existing techniques for indoor localization using Wi-Fi fingerprinting can be categorized as follows:

(i) Server-side approach (SSA): In this approach, u starts out by obtaining a Vr that is shipped to s.
The location estimation λur of u is computed on s executing loc(Vr ,RM), and transmitted back to u. In
this approach, the values of the objective functions FT and FC are minimum, as we will show in both
the performance analysis and evaluation sections, given that u does not carry out any computation.
The drawback of this approach is that it suffers from intermittent connectivity. Particularly, in the
case of successful communication the best possible localization can be achieved by loc() using RM
(i.e., the case where Point Accuracy Ar = α). Otherwise, the location estimation of u at time step
r ′ (i.e., λur ′) can only be inferred upon the last estimation computed, i.e., Ar = |λ

u
r ′ − l

u
r | + α . We

observe that the parameter Ar grows worse as u moves further away from lur . Therefore, in the SSA
approach the objective function FA for Point Accuracy grows worse, as θ gets smaller.

(ii) Client-side Approach (CSA): In this approach, u downloads the whole RM from s. Assuming
that the download process has completed, u can obtain a localization estimate by obtaining a Vr that
is compared against RM . This approach minimizes the objective function FA, since it achieves the
best possible Point Accuracy A = α and it is not affected by intermittent connectivity. The drawback
of the CSA is that the objective functions FT and FC are maximum, as we will again show in both
the performance analysis and evaluation sections, given that u has to both download the complete
RM but also delay its computation by going through the complete RM . Although this is a one-time
cost, which might seem bearable for continuous localization, it can still be prohibitive in real-world
scenarios where RM changes quickly over time or for complex building structures.

4 THE GRAP FRAMEWORK
In this section, we describe our general Graph Prefetching (Grap) framework and discuss its various
parameters and techniques.

4.1 Outline of Operation
The Grap framework comprises of the following conceptual steps (see Fig. 1): (i) it structurally ana-
lyzes building topologies yielding a Dependency Graph (DG) that represents the probability/likeliness
of users visiting other nodes in the building. This can be calculated using problem-specific informa-
tion such as structural information of a buildings or even historical traces as we used in [13]; (ii) a
proposed GDA algorithm then finds the nodes with the highest probability to be visited from the
current location of u; (iii) the fingerprints falling within the selected nodes form a partial RadioMap
RMu

r ; and (iv) in connected operation, u forwards its fingerprintVr to server s and receives its location
λur and RMu

r while in disconnected operation, u calculates λur locally using only the prefetched RMu
r .

Using the above framework, Grap prefetches a small group of RadioMap entries (partial RadioMap)
on u, which can aid localization at u in case it looses connection to s. In this way, it overcomes the
drawbacks of both SSA and CSA discussed in the previous section.

4.2 Graph Distance A* (GDA) Algorithm
In this subsection, we discuss our proposed Graph-Distance A* (GDA) algorithm and its major
components, namely the createDG () technique for generating the dependency graph DG and the
дraphSearch() technique for selecting the best possible partial radiomap RMu

r . We also discuss how
each single parameter of GDA influences its performance in terms of the three performance metrics
we defined in Section 3, i.e., Point Accuracy Ar , CPU time Tr and Network Capacity Cr .

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1. Publication date: November 2017.

1:8 Konstantinidis, A. et al.

Fig. 1. The conceptual steps of the proposed Grap framework.

4.2.1 Dependency Graph generation. The createDG () technique summarized in Algorithm 1
constructs a DG and connects the nodes through physical transitions by consulting the actual plan
B = ⟨N ,E⟩ of the building (we ignore the associated raster graphic of the building). The N -set
contains the Points-Of-Interests (POIs), which refer to rooms, intersections, elevators, staircases,
etc., in the building as these have been provided by architects or crowdsourcers (so these are always
up-to-date). The E-set contains the corridors, physical pathways, etc., as these are aligned to floors
inside a building. The DG has been proposed to represent the connectivity on indoor POIs as well as
the POIs importance in a building (with respect to the probability to be visited) and the POI-to-POI
distances. Formally, the DG is defined as a weighted undirected graph DG = ⟨N ′,E ′⟩, where:

(1) N ′ is the set of nodes, each corresponding to a POI along with a self-importance s (ni)
weight indicating its probability to be visited by a random user. Formally, N ′ = ∀(ni , s (ni)).

(2) E ′ is the set of edges, each corresponding to an edge along with an edge-weight indicating
the Lp -Norm distance between two connected nodes. Formally, E ′ = ∀((ni ,nj),d (ni ,nj)).

The createDG () technique assigns weights to all nodes (lines 3 to 12 of Algorithm 1) by estimating
their self-importance in terms of how likely users pass from a particular node (a.k.a. authority hub)
to reach their destination. The algorithm also uses a damping factor (d f) to capture a probability
of a random user to continue navigating at any step of the iterative computation. In particular, the
importance of a node is defined iteratively and depends on the degree (number of links) of that
particular node as well as on how many nodes in N can be visited via that node (i.e., the so called
horizon) in order to favor nodes with low number of links but high betweenness (such as nodes that
bridge two buildings or central corridors). This differentiates our approach from similar approaches
like the PageRank algorithm [6], which does not use any horizon or outlook during its computation
process. Finally, the createDG () technique assigns weights to all edges by calculating the Euclidean
distance between them (lines 13 to 15 of Algorithm 1).

4.2.2 Partial Radiomap selection. In this section, we design an A* search approach using
domain-specific indoor heuristics, to explore the DG generated in the previous subsection in order to
find the best nodes that u should prefetch from s.

In an intermittently-connected environment where u might be in a disconnected state during the
next time step, u greedily hoards as much data as possible from s before being disconnected. An
A* search algorithm comprises of an evaluation function f (a, z) = д(a,b) + h(b, z), where д(a,b)
denotes a cost function that gives the path cost from the start node a to intermediate node b and
h(b, z) a heuristic function that estimates the cheapest path from b to the goal z. In our context, both
д() and h() are calculated using the graph-distance cost G2 [4, 18], which reflects the topological
constraints and physical entities of a building, such as elevators, corridors, walls, etc., given that

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1. Publication date: November 2017.

IoT Data Prefetching in Indoor Navigation SOAs 1:9

Algorithm 1 createDG (): builds the dependency graph

Input: Building plan B = ⟨N ,E⟩: un-weighted graph, t : convergence iterations
Output: Dependency Graph DG = ⟨N ′,E ′⟩

1: nb ← neiдhbors (B) ▷ nb: set of neighbors for each node
2: vs ← horizon(B) ▷ vs: horizon set for each node
3: for all ni ∈ N do ▷ Step 1: Calculate Node Weight Set N ′ = ∀(ni , s (ni))
4: s (ni) = |nb (ni) | + |vs (ni) | ▷ initialize self-importance of node ni
5: end for
6: d f ← 0.85 ▷ d f : damping factor
7: while t > 0 do
8: for all ni ∈ N do
9: s (ni) =

1−df
|N | + d f ×

∑
nj ∈nb (ni)

s (nj)
|nb (nj) |

▷ iteratively refine self-importance of node ni
10: end for
11: t ← t − 1 ▷ t : alternatively, iterate until

∑
ni ∈N (| |s (ni)t − s (ni)t+1 | |2) < t

12: end while
13: for all (ni ,nj) ∈ E do ▷ Step 2: Calculate Edge Weight Set E ′ = ∀((ni ,nj),d (ni ,nj))
14: d (ni ,nj) =

√
(ni − nj)

2
▷ d: any Lp norm distance metric (e.g., Euclidean distance)

15: end for

the Lp -norm distances (e.g., Euclidean, Manhattan) are unsuitable. For example, assume two nodes
ni , nj , and an edge (ni ,nj) on the graph if and only if there is a physical transition between the two
nodes. The Euclidean distance L2-norm is equal to the line segment directly connecting them. In
cases, where the path between ni and nj contains some intermediate nodes (i.e., ni ⇝ nj) then the
distance between them, denoted as graph distance estimation d (ni ⇝G2 nj), is not a direct line from
ni to nj , but the summation of the Euclidean distances from start node ni to nj .

In Algorithm 2 we present the detailed steps of the GDA algorithm (i.e., also denoted as graph-
Search()) executed once per time step r . It is important to recall the fact that we aim at finding the
best nodes to be prefetched in a target-less manner before u is disconnected from s and therefore
there is no goal state for h() to be calculated. In line 1 of Algorithm 2 we show how in the absence
of a target, the дraphSearch() technique initially finds m virtual targets that represent the m most
possible destinations of u based on its current node location (nu). The technique selects those m
destinations based on their self-importance s (ni) of DG presented in the previous subsection. It is
important to explain that thesem destinations are selected within w hops from nu so that these are
not very far destinations (we use the notation wno to refer to an unlimited window).

After the m virtual targets are selected and data structures are initialized, in lines 6-19 our A∗

approach aims to identify the best possible targets to be explored next using two sets (an openSet
used for nodes to be evaluated and a closedSet used for nodes already evaluated). In an intermittently-
connected environment, where u might be in a disconnected state during the next time step, u has
to greedily hoard as much data as possible from s before being disconnected. This idea is at the
algorithmic level shown by line 6. In line 7-9, we iterate over the next possible intermediate nodes one
node at a time. For each explored node we calculate д() from a current location n to each neighboring
node ni and calculates h() by running the Dijkstra algorithm to find the shortest path in terms of G2
from ni to each potential target nj , j = 1, ...,m in lines 10-14 of Algorithm 2. The node ni with the
lowest f () is recorded in line 15. Given that the user might disconnect at any given moment of the
above algorithm execution, the server s streams results back to user u as these become available (i.e.,

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1. Publication date: November 2017.

1:10 Konstantinidis, A. et al.

Algorithm 2 GDA:=дraphSearch(): executed at each r and generating a new RMu
r while u is moving

Input: DG = ⟨N ,E⟩, RM , nu : user current location,m: number of virtual targets
Output: Partial Radiomap RMu

r

1: Hm ← top (sort (f ind (nu ,w,DG)),m) ▷ identify virtual targets in DG w hops away from nu
2: resultSet := {}; openSet := {nu } ▷ set of nodes evaluated in GDA; set of nodes to be evaluated
3: д(nu ,n) = 0 ▷ Graph Distance Cost (from nu to some intermediate node n)
4: h(n,nj) = ∞ ▷ Heuristic Cost (from intermediate node n to a virtual target nj ∈ Hm)
5: f (nu ,nj) = ∞ ▷ Total Cost (from nu towards one virtual target nj ∈ Hm)
6: while (connectedr) do ▷ u is connected to s at time step r according to Equation 1
7: n := f indMin(openSet) ▷ n: Next intermediate node (with minimal cost)
8: for all ni ∈ neiдhbors (n) do ▷ ni : Neighbor of next intermediate node
9: if ni < resultSet then

10: д(n,ni) ← d (n ⇝G2 ni) ▷ Graph distance cost of n to ni
11: for j = 1, ...,m do
12: h(ni ,nj) ← Dijkstra(ni ,nj) ▷ Heuristic cost from ni to target nj
13: f (ni ,nj) = д(n,ni) + h(ni ,nj) ▷ Total cost from ni to nj
14: end for
15: add (openSet ,ni ,min(f (ni ,nj) |j = 1, ...,m)) ▷ Add ni using its least cost towards nj
16: end if
17: end for
18: remove (openSet ,n); add (resultSet ,n) ▷ Evaluation for node n has been completed
19: RMu

r ← pRM (resultSet ,RM) ▷ Build RMu
r incrementally and stream results to u

20: end while

line 19). User u utilizes these updates to build RMu
r , which will be used for localization in subsequent

disconnected states.
One optimization is that in cases where wno is used, the m destinations are not required to be

updated among successive GDA executions (i.e., line 1). In order to further optimize the performance
of Grap, a cache on the smartphone’s internal storage (e.g., sdcard, flash memory) is used to keep
previous RMu

r . When this optimization process is utilized, the user checks if any of the locally cached
RMu

r can serve its localization request. This reduces the occasions where localization requests to s
are initiated and thus, network resources are conserved.

Example: Consider the scenario in Fig. 2 where a user u is at node A and requests a RMu
r while in a

connected operation state. Grap constructs a dependency graph of 10 nodes {A, . . . , J} as illustrated
in Fig. 2 (left) by analyzing some building plan. The edges represent the physical transitions between
the nodes. The createDG() function of Grap selects them = 3 targets with the highest probability of
being the destination to u within a window w = 3. This denotes that the targets should be at least 3
hops away from node A (i.e., the current location of u). Let us assume that the m most promising
targets (i.e., the virtual targets) are nodes H , I , J denoted with dotted circles.

In the second stage of the Grap framework shown in Fig. 2 (right), we invoke GDA дraphSearch()
to identify the best possible nodes to prefetch along the way to the m destinations. Let us assume
w.l.o.g. that in our example scenario u is enough time to download K = 5 nodes before being
disconnected from s. At the beginning GDA expands all neighboring nodes of A and finds the best
with respect to f (n) towards each of the m target. From the available options, node D is the best
choice towards target H with f (D) = 21 and node F towards targets I , J with f (F) = 23 and f (F) = 7,
respectively. Both D and F are selected to be prefetched in round 1. In the second round, GDA selects

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1. Publication date: November 2017.

IoT Data Prefetching in Indoor Navigation SOAs 1:11

Fig. 2. Example execution of the GDA algorithm.

node G as the best choice towards targets H , I with f (G) = 16 and f (G) = 8, respectively, and
reaches target J . Therefore, nodes G and J are selected to be prefetched and the search towards target
J stops. Finally, the algorithm selects nodes H and I as the final nodes to be prefetched with f (H) = 7
and f (I) = 8, but because we have already selected four nodes to be prefetched, there is space for
just one more node. GDA selects node H (and discards node I) because its overall cost function f (n)
is better.

4.3 Performance Analysis
We analytically derive the performance of Grap with respect to the estimated Accuracy A, CPU
time T and Network capacity in messages C at the client side u. We adopt a worst case analysis
as it provides a bound for all input. Our experimental evaluation in Section 6, shows that under
real datasets our approach performs more efficiently than the projected worst case. The analysis is
based on our system model and ignores any other performance costs not directly associated with the
localization phase during the disconnected operation, any offline calculations performed by s (e.g.,
running the createDG () technique) or any idle time at u while s performs calculations (e.g., running
the дraphSearch() technique) since we consider these costs negligible. For ease of exposition, our
analysis uses the notation T TX , T RX and T P to denote the computational cost needed by u for
transmitting, receiving and processing a single RM entry Vl from s.

Lemma 1 Grap guarantees an estimated localization accuracy of at least Ar = max∀i ∈RM (|λui −
lui |) + α , for a user u at a localization request r .

Proof. The maximum Euclidean distance error that can be provided by the Grap framework is equal
to the maximum distance between any two locations in the whole radiomap RM plus the estimated
point accuracy constant α . Particularly, let us assume that user u enters a building from its one
end and at r requests to prefetch a partial radiomap RMu

r from s. Server s runs our дraphSearch()
technique and generates a RMu

r composed of the fingerprints associated to a single node around
the user’s initial location lur . Then u moves to a location lur ′ at the other end of the building facing
disconnections along the whole path. At that location, u runs the loc () function using the prefetched
RMu

r , received from s at the very beginning, and calculates an estimated user location λur ′ that is the
farthest location available in RM with respect to lur ′ . In this worst case scenario, Grap provides a
Ar = |λ

u
r ′ − l

u
r ′ | + α □

Similarly to Lemma 1, CSA guarantees the best possible localization accuracy Ar = α because u
has downloaded the complete RM and thus λur = l

u
r for every r . On the other hand, SSA has a similar

worst case accuracy bound as the Grap framework given that it also does not have the complete RM .

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1. Publication date: November 2017.

1:12 Konstantinidis, A. et al.

Lemma 2. The Grap framework has a computational cost of O (T TX + I ′ ·M · T RX + I ′ · T P), where
I ′ is the number of RM entries retrieved from s and M the number of RM dimensions.

Proof. During the connected operation, u sends a request for localization to s spending T TX time.
Then s responds to u with an estimated location λur = (xu ,yu) of size equal T RX , as well as I ′ << I
database entries, where each entry has M + 2 values, therefore u spends I ′ ·M · T RX time. The I ′

entries represent the fingerprints associated with the nodes selected by our GDA approach to be
prefetched by u. Finally, during the disconnected operation u localizes itself using the I ′ entries
spending I ′ · T P. We can safely assume that I ′ < I , therefore, adding all computational time costs in
an asymptotic manner yields O (T TX + I ′ ·M · T RX + I ′ · T P) □

Similarly to Lemma 2, CSA has a max computational cost O (T TX + I ·M · T RX + I · T P) and
SSA a min computational cost O (T TX + T RX) for each r . The message cost for all three techniques
CSA, SSA and Grap is thus O (I),O (1) and O (I ′), respectively.

5 GRAP PROTOTYPE IMPLEMENTATION
In this section, we describe the system that we implemented to evaluate the efficiency of the Grap
framework and to validate that our propositions can easily be integrated in a real system. Our system
comprises of the Grap Evaluator and the Grap Navigator. Both components where implemented on-
top of our in-house Anyplace IIN-SOA, which allows entities (i.e., users, companies, organizations,
etc.) to realize indoor information management systems, including product search and point of
interest (POI) navigation, on top of existing wireless network infrastructure by leveraging rich
multi-sensory data available on smartphones (see Section 2.1).

5.1 Grap Evaluator
The aim of the Grap Evaluator is to allow trace-driven evaluation and visualization of the presented
techniques with data available through the public Anyplace IIN-SOA. The evaluator comprises
of a Data Connector, a Simulator and a Visualizer. The data connector connects to Anyplace and
downloads IoT-data available through its open API. For this task we had to introduce some new JSON
endpoints to Anyplace. The Simulator then implements all the algorithms along with evaluation
metrics discussed in the next section. The Visualizer shows the graph generated by various building
plans (e.g., see Fig. 3) but also allows tracing the presented algorithms to understand their behavior.
All components were written in JAVA, compiled using JDK 8.0 and comprise of ≈ 16,040 lines-of-
code (LOC). After concluding our trace-driven experimentation, we ported the prefetching algorithms
to an android client app presented next.

5.2 Grap Navigator
The aim of the Grap Navigator was to create a proof-of-concept realization of our propositions in a
real mobile indoor search, exploration and navigation tool. We particularly adapted the Anyplace
navigator with options to introduce intelligent prefetching and caching. The installation package
of the Grap android client we developed was only around 5MB. Overall, our code consists of
approximately 34,575 LOC, including 2010 lines of XML elements that go in the Manifest file
(settings) and the user interface XML descriptions of the navigator.

Our prototype GUI in Fig. 4 allows a user to select the prefetching functionality in order to
navigate in a building without suffering by intermittent connectivity along with supplementary
control features that are useful for demonstration purposes. The GUI allows a user to visualize the
RMu

r prefetched at each localization step on a map. The interface uses the actual plan of a building
and overlays a heatmap that represents the signal strength values in dBm collected from nearby APs
(i.e., the fingerprints) and prefetched on the user’s smartphone. Fig. 4 (right), shows a heatmap of

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1. Publication date: November 2017.

IoT Data Prefetching in Indoor Navigation SOAs 1:13

(a) Hotel (b) Campus (c) Mall

Fig. 3. Datasets. The topologies of the three datasets obtained through the Anyplace IIN-SOA JSON
API. The visualization is carried out with the Grap Evaluator/Visualizer.

the partial-radiomap prefetched on the mobile device, which is considerably smaller in size than the
fingerprints of all floors.

6 EXPERIMENTAL EVALUATION
This section presents an extensive experimental evaluation of our proposed Grap framework. We
start-out with the experimental methodology and setup, followed by our experimental studies.

6.1 Methodology
Real Datasets: We constructed three realistic datasets from three real IoT-data obtained through the
publicly available API of our Anyplace IIN-SOA described in Section 2.1.
Hotel Pittsburgh: This datasets was collected at the Wyndham Grand Pittsburgh Downtown Hotel in
Pittsburgh, PA, USA. In particular, it consists of around 500 reference fingerprints taken from ∼308
Wi-Fi APs installed in the two floors of the hotel and neighboring buildings. The structure of the
hotel is of a rectangular shape as shown in Fig. 3a, it covers around 6,500 m2 and consists of 201
POIs and 247 edges.
Campus CSUCY: This datasets was collected at the Department of Computer Science (CS), University
of Cyprus. In particular, it consists of 5,000 reference fingerprints taken from ∼266 Wi-Fi APs
installed in the four floors of the CS and neighboring buildings. We collected our data by walking
over a path that consists of ≈ 2,900 locations. The structure of the CSUCY campus is of a bus-like
shape as shown in Fig. 3b, it covers around 2,500m2 and consists of 397 POIs and 440 edges.
Mall of Cyprus: This datasets was collected at the Mall of Cyprus. In particular, it consists of
800 reference fingerprints taken from ∼279 Wi-Fi APs installed in the two floors of the mall and
neighboring buildings. The structure of the mall is of a mesh-like shape as shown in Fig. 3c, it covers
around 18,500m2 and consists of 214 POIs and 289 edges.

User Traces: In order to evaluate the scalability of our propositions we generated realistic user traces
of various scales where a user follows and localizes at pre-defined locations. The traces are designed
for our evaluation study, in order to show the performance vs. accuracy trade-off in using Grap.
Particularly, the distinct locations are of fixed distance between each other (e.g., around 5 meters) and
the size of traces varies from 15-30 localizations steps (i.e., a user moving in a multi-floor building
and travels around 50-150 m). The RadioMap is also spatially grouped into equal-size blocks that
correspond to the POIs of a particular building. Both the traces and blocks can be viewed and verified
using the Grap visualizer described in Section 5.

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1. Publication date: November 2017.

1:14 Konstantinidis, A. et al.

Fig. 4. The Grap Navigator (left) showing the menu for switching the prefetching feature on/off; and
(center) varying the GDA parameters; (right) viewing the prefetched IoT data and user’s location.

Algorithms: We compare the proposed Grap framework with two Anyplace (no-prefetching) baseline
approaches and two Grap (with prefetching) baseline approaches.
Anyplace (no-prefetching) baseline approaches: Server-Side Approach (SSA) and Client-Side Ap-
proach (CSA), as described in Section 3.3, do not prefetch any localization data since the former
keeps the whole RM at the server-side and the latter downloads the whole RM on the mobile device
of the user u prior localization.
Grap (with prefetching) baseline approaches: The proposed Graph Distance A* approach (GDA) of
the Grap framework, as described in Section 4, the Breadth First Search (BFS) approach that selects
nodes to be prefetched level-by-level based on user’s current location starting from the neighbor
nodes before moving to the next level nodes and the Random (RND) selection approach, which
selects nodes to be prefetched randomly.

Metrics: Our cost metrics are: CPU Time (T), Location Accuracy (A) and Network Capacity (C)
as defined in Section 3.2. The mean and standard deviation of the results is shown with error bars
in all experimental studies that follow, each entailing 37 localization steps (i.e., the route length of
trajectories in our experiments).

Parameters: In all experiments that follow the simulation parameters were configured as follows:
dwell time K = 15 (i.e., time required to download K data blocks), number of virtual targets m = 3,
lookahead windoww = 3, effective network threshold θ = −40dBm and localization method = WKNN.
The influence of each of those parameters on the proposed approach is investigated individually in
Experiments 2-5 (Subsections 6.3 to 6.6) by fixing the rest of the parameters accordingly.

6.2 Experiment 1: Performance Evaluation
In the first experiment, our main target was to assess the performance objectives A, T and C for
the compared algorithms. As shown in Fig. 5, the no-prefetching approaches CS and SS are the
extreme cases, providing the best A and the best resources consumption, respectively, demonstrating
a clear trade-off between A vs. (T and C). The proposed GDA approach of the Grap framework
performs well (< 5m) and better than both prefetching RND and BFS approaches in all datasets. In
particular, GDA provides an average A = 1.84m in the Hotel dataset that is an improvement of 65%
w.r.t. RND and 40% w.r.t. BFS. In the Campus dataset, GDA provides an average A = 1.26m that is
an improvement of 83% w.r.t. RND and 60% w.r.t. BFS. Finally in the mall dataset, GDA provides
an average A = 4.52m that is an improvement of 68% w.r.t. RND and 50% w.r.t. BFS. The accuracy

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1. Publication date: November 2017.

IoT Data Prefetching in Indoor Navigation SOAs 1:15

 0

 5

 10

 15

 20

 25

 30

SS R
N
D

BFS
G
D
A

C
S

SS R
N
D

BFS
G
D
A

C
S

SS R
N
D

BFS
G
D
A

C
S

A
v
e

ra
g

e
 A

c
c
u

ra
c
y
 A

 (
in

 m
e

te
rs

)

Dataset

Average Point Accuracy
Methods=ALL; Loc-Method=WKNN;

(K=15; m=3; θ=-40; w
on

=3;)

MallCampusHotel

 0

 50

 100

 150

 200

 250

 300

SS R
N
D

BFS
G
D
A

C
S

SS R
N
D

BFS
G
D
A

C
S

SS R
N
D

BFS
G
D
A

C
S

C
P

U
 T

im
e

 T
 (

in
 m

s
)

Dataset

Average CPU Time
Methods=ALL; Loc-Method=WKNN;

(K=15; m=3; θ=-40; w
on

=3;)

MallCampusHotel

 0

 1000

 2000

 3000

 4000

 5000

SS R
N
D

BFS
G
D
A

C
S

SS R
N
D

BFS
G
D
A

C
S

SS R
N
D

BFS
G
D
A

C
S

N
e

tw
o

rk
 C

a
p

a
c
it
y
 C

 (
in

 m
e

s
s
a

g
e

s
)

Dataset

Average Network Capacity
Methods=ALL; Loc-Method=WKNN;

(K=15; m=3; θ=-40; w
on

=3;)

MallCampusHotel

Fig. 5. Experiment 1 - Performance Evaluation: GDA evaluation in terms of average Point Accuracy A
(left), average CPU Time T (center) and Network Capacity C (right) in all datasets.

of GDA is relatively close (i.e., 2.54m, on average) to the best possible localization A of the CS
approach and provides an improvement of at least > 70% in all three datasets over the SS approach.
This shows that GDA calculates and prefetches an almost best set of fingerprints (partial radiomap
RMu

r) and therefore it successfully overcomes the intermittent connectivity issues.
We observe that all approaches sacrifice performance (i.e., T and C) for the sake of better quality

(i.e., A). The CS approach requires the highest T (118.6 msec, on average) and C (2060 messages, on
average) since it downloads the whole RadioMap (the actual numbers are summarized in subsec-
tion 6.1) and uses all fingerprints at each localization step. For the Campus dataset, which entails
one order of magnitude more fingerprints, this drawback is even more apparent. The prefetching
approaches including the proposed GDA require less T and C than CS, since they utilize a partial
RadioMap, and more resources than SS that does not download any fingerprints and does not cal-
culate its location locally at the client side. In particular, GDA requires 28 msec more T and 683
more messages, on average, compared to SS. In some cases the proposed GDA approach consumes
slightly more resources than the other two prefetching techniques due to the fact that it performs
more sophisticated computations (e.g., calculates the graph distance towardsm destinations, etc.) to
calculate the RMu

r than the RND and BFS approaches. However, the slight increase on the resources
consumption offers much better A, as discussed earlier.

6.3 Experiment 2: Dwell Time (K)
Experiment 2 examines how dwell time K influences the behavior and the performance of the pro-
posed Grap framework. Recall that K represents the available time for downloading the fingerprints
associated to K nodes of the DG and therefore represents the size of the partial radiomap RMu

r that is
downloaded by u when connected and processed by u when in a disconnected state. In particular, in
this experiment we evaluate the performance of all prefetching approaches (RND, BFS and GDA) that
incorporate the K parameter in their solution in terms of A,T andC. We also include the performance
of the no-prefetching (i.e., CS and SS) approaches that are independent of K for comparison purposes.

Fig. 6 (left) shows that all prefetching approaches are positively affected by the increase of K since
high K means that there is more time to download more fingerprints for a more fine localization.
However, this negatively affects the two performance metrics (i.e., T and C in Fig. 6 (center) and
(right)) since the increase of K results in more fingerprints to be downloaded during a connected state
and a larger RMu

r to be processed while localizing in a disconnected state. Moreover, the results in
Fig. 6 also show that the delicate selection of fingerprints by the proposed GDA approach overwhelms
the absence of a large number of fingerprints when K is small since the provided A varies from 6m
for K = 1 to 0.8m for K = 20 and therefore it is influenced less than its counterpart prefetching
approaches. In particular, GDA provides an average of 75% better A than RND, around 52% than

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1. Publication date: November 2017.

1:16 Konstantinidis, A. et al.

 0

 5

 10

 15

 20

 25

SS R
N
D
BFS

G
D
A
C
S

SS R
N
D
BFS

G
D
A
C
S

SS R
N
D
BFS

G
D
A
C
S

SS R
N
D
BFS

G
D
A
C
S

SS R
N
D
BFS

G
D
A
C
S

A
v
e

ra
g

e
 A

c
c
u

ra
c
y
 A

 (
in

 m
e

te
rs

)

Dwell Time K

Average Point Accuracy
Methods=ALL; Dataset=CSUCY; Loc-Method=WKNN;

(m=3; θ=-40; w
on

=3;)

20151051

 0

 50

 100

 150

 200

 250

 300

SSR
N
D
BFS

G
D
A
C
S

SSR
N
D
BFS

G
D
A
C
S

SSR
N
D
BFS

G
D
A
C
S

SSR
N
D
BFS

G
D
A
C
S

SSR
N
D
BFS

G
D
A
C
S

C
P

U
 T

im
e

 T
 (

in
 m

s
)

Dwell Time K

Average CPU Time
Methods=ALL; Dataset=CSUCY; Loc-Method=WKNN;

(m=3; θ=-40; w
on

=3;)

20151051

 0

 1000

 2000

 3000

 4000

 5000

SSR
N
D
BFS

G
D
A
C
S

SSR
N
D
BFS

G
D
A
C
S

SSR
N
D
BFS

G
D
A
C
S

SSR
N
D
BFS

G
D
A
C
S

SSR
N
D
BFS

G
D
A
C
S

N
e

tw
o

rk
 C

a
p

a
c
it
y
 C

 (
in

 m
e

s
s
a

g
e

s
)

Dwell Time K

Average Network Capacity
Methods=ALL; Dataset=CSUCY; Loc-Method=WKNN;

(m=3; θ=-40; w
on

=3;)

20151051

Fig. 6. Experiment 2 - Dwell Time (K): examining the GDA accuracy (left), CPU time (center) and
Network Capacity C (right) while varying the Dwell Time (K).

 0

 5

 10

 15

 20

 25

SS R
N
D

BFS
G
D
A

C
S

SS R
N
D

BFS
G
D
A

C
S

SS R
N
D

BFS
G
D
A

C
S

A
v
e

ra
g

e
 A

c
c
u

ra
c
y
 A

 (
in

 m
e

te
rs

)

Effective Network θ (in RSSI)

Average Point Accuracy
Methods=ALL; Dataset=CSUCY; Local. Acc.=WKNN;

(K=15; m=3; w
on

=3;)

-50-40-30

 0

 50

 100

 150

 200

 250

SS R
N
D

BFS
G
D
A

C
S

SS R
N
D

BFS
G
D
A

C
S

SS R
N
D

BFS
G
D
A

C
S

C
P

U
 T

im
e

 T
 (

in
 m

s
)

Effective Network θ (in RSSI)

Average CPU Time
Methods=ALL; Dataset=CSUCY; Local. Acc.=WKNN;

(K=15; m=3; w
on

=3;)

-50-40-30

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

SS R
N
D

BFS
G
D
A

C
S

SS R
N
D

BFS
G
D
A

C
S

SS R
N
D

BFS
G
D
A

C
S

N
e

tw
o

rk
 C

a
p

a
c
it
y
 C

 (
in

 m
e

s
s
a

g
e

s
)

Effective Network θ (in RSSI)

Average Network Capacity
Methods=ALL; Dataset=CSUCY; Local. Acc.=WKNN;

(K=15; m=3; w
on

=3;)

-50-40-30

Fig. 7. Experiment 3 - Effective Network (θ): examining the GDA accuracy (left), CPU time (center)
and Network Capacity C (right) while varying the effective network θ threshold.

BFS and it is preferable than the no-prefetching SS approach in all cases except the extreme case for
K = 1, where the amount of prefetched fingerprint does not suffice to outweight the SS approach.

Note that all prefetching approaches will reach an A equal to the best possible A of the CS approach
when the dwell time of a localization step is enough for downloading the whole radiomap RM . This
increase of K , however, results in an increase on the resource consumption with the results of the CS
approach showing theT andC needed in the worst case. The slight variations between the prefetching
approaches in terms of T and C for the same K are due to the additional effort needed for calculating
the K nodes, which consequently select K different nodes with varying number of fingerprints.

Clearly, there is a trade-off between the dwell time K << N and the benefit (i.e., the A, T and
C metrics we defined). Particularly, with larger K better A is expected on the one hand but more C
and T is spent, since K → N and I ′ → I . If user u sets K = N then I ′ = I and RMu

r = RM and u
will receive the whole RM . In this case, Grap is the same as the client-side approach CSA described
earlier.

6.4 Experiment 3: Effective Network (θ)
Experiment 3 examines the sensitivity of the proposed GDA approach and all other approaches for
various θ parameters. Recall that the θ parameter represents the effectiveness of the network with
respect to a user being connected, meaning that the lowest the θ of a network is, the less intermittent
connectivity inside a building exists and therefore the highest the probability of useru to be connected
while navigating in the building.

Fig. 7 (left) shows that all prefetching approaches are positively affected by the decrease of θ since
user u is more frequently connected and therefore communicates with the server s more often for
enriching its RMu

r with more nodes and consequently more fingerprints. The proposed GDA approach
provides, however, the best A in all cases that increases while the θ parameter decreases due to the

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1. Publication date: November 2017.

IoT Data Prefetching in Indoor Navigation SOAs 1:17

 0

 2

 4

 6

 8

 10

 12

 14

SS R
N
D
BFS

G
D
A
C
S

SS R
N
D
BFS

G
D
A
C
S

SS R
N
D
BFS

G
D
A
C
S

SS R
N
D
BFS

G
D
A
C
S

A
v
e

ra
g

e
 A

c
c
u

ra
c
y
 A

 (
in

 m
e

te
rs

)

Localization Algorithm

Average Point Accuracy
Methods=ALL; Dataset=CSUCY;

(K=15; m=3; θ=-40; w
on

=3;)

WMSSEMMSEWKNNKNN

 0

 50

 100

 150

 200

 250

 300

SS R
N
D
BFS

G
D
A
C
S

SS R
N
D
BFS

G
D
A
C
S

SS R
N
D
BFS

G
D
A
C
S

SS R
N
D
BFS

G
D
A
C
S

C
P

U
 T

im
e

 T
 (

in
 m

s
)

Localization Algorithm

Average CPU Time
Methods=ALL; Dataset=CSUCY;

(K=15; m=3; θ=-40; w
on

=3;)

WMSSEMMSEWKNNKNN

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

SS R
N
D
BFS

G
D
A
C
S

SS R
N
D
BFS

G
D
A
C
S

SS R
N
D
BFS

G
D
A
C
S

SS R
N
D
BFS

G
D
A
C
S

N
e

tw
o

rk
 C

a
p

a
c
it
y
 C

 (
in

 m
e

s
s
a

g
e

s
)

Localization Algorithm

Average Network Capacity
Methods=ALL; Dataset=CSUCY;

(K=15; m=3; θ=-40; w
on

=3;)

WMSSEMMSEWKNNKNN

Fig. 8. Experiment 4 - Localization Methods: examining the GDA accuracy (left), CPU time (center)
and Network Capacity C (right) with respect to various localization methods.

fact that its has more opportunities to download an efficient set of nodes and represent the actual
path that the user will follow as well as there is an increased probability to correct possible flaws at
the initial calculations. In particular, GDA provides a poor A of around 10m for θ = −30dBm that is
58% better than the accuracy provided by RND and 2% better than the BFS and a fine A of 0.33m for
θ = −50dBm that is 75% better than the one provided by RND and 43% better than BFS. Regarding
the no-prefetching approaches the SS is influenced from the network effectiveness more than any
other approach, since for high θs (-30dBm) and consequently for high intermittent connectivity, u
cannot communicate with s and therefore it cannot localize and navigate in the building. Therefore,
SS provides worse A than both BFS and GDA in all cases, due to the fact that the latter prefetch
fingerprints when connected to localize at the smartphone in cases of disconnections. On the other
hand, the CS approach is independent to the θ parameter since u downloads the whole RM a priori
and does not require any communication with s during navigation.

In terms of resource consumption, however, the CS is the worst since it utilizes maximum resources
in all cases irrespectively of the actual needs of the localization process. The SS approach is the best
in these performance metrics since it requires the minimum resources at each localization step. The
most important information, however, with respect toT andC comes from the prefetching approaches
since the results show that all approaches are not influenced by the θ parameter and provide similar
results in all cases. This is another major benefit of the proposed GDA approach since it provides
considerable better A by utilizing similar resources compared to RND and BFS.

6.5 Experiment 4: Localization Algorithms
Experiment 4 examines the impact of various localization algorithms (i.e., K-Nearest Neighbors
(KNN), Weighted-KNN (WKNN), Minimum Mean Square Error (MMSE), Weighted-MMSE (WMMSE))
available in the Anyplace IIN-SOA [34] on the performance of all approaches. Any localization
technique can be used in the loc() step of the Grap framework for calculating the user’s current
location by utilizing a (partial) radiomap at every localization step. The results in Fig. 8 show that
neither the prefetching approaches nor the no-prefetching approaches are considerably influenced by
the localization algorithm since they provide similar results with respect to A, T and C in all cases.
In general, all approaches provide slightly worse A when the KNN algorithm is used and utilize
almost negligibly more resources. In all cases, however, the proposed GDA approach provides better
results than all prefetching approaches and successfully adopts the trade-off between A and resources
consumption T and C with respect to the no-prefetching approaches SS and CS.

6.6 Experiment 5: GDA Sensitivity Analysis
In these experiments, we examine several control parameters of the proposedGDA approach and how
these parameters influence its performance in terms of A,T andC. Recall that for the Experiments 2-4

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1. Publication date: November 2017.

1:18 Konstantinidis, A. et al.

 0

 2

 4

 6

 8

 10

L 2 G 2 G 1 1 3 5 7 no 1 3 5 10

A
v
e

ra
g

e
 A

c
c
u

ra
c
y
 A

 (
in

 m
e

te
rs

)

Control Parameters

Average Point Accuracy
Methods=ALL; Loc-Method=WKNN;

(K=15; θ=-40;)

Lookahead Window (w)Destinations (m)GDA Distance
(to m destinations)

 0

 10

 20

 30

 40

 50

 60

 70

L 2 G 2 G 1 1 3 5 7 no 1 3 5 10

C
P

U
 T

im
e

 T
 (

in
 m

s
)

Control Parameters

Average CPU Time
Methods=ALL; Loc-Method=WKNN;

(K=15; θ=-40;)

Lookahead Window (w)Destinations (m)GDA Distance
(to m destinations)

 0

 500

 1000

 1500

 2000

L 2 G 2 G 1 1 3 5 7 no 1 3 5 10

N
e

tw
o

rk
 C

a
p

a
c
it
y
 C

 (
in

 m
e

s
s
a

g
e

s
)

Control Parameters

Average Network Capacity
Methods=ALL; Loc-Method=WKNN;

(K=15; θ=-40;)

Lookahead Window (w)Destinations (m)GDA Distance
(to m destinations)

Fig. 9. Experiment 5 - Control Parameter Experiments: examining the GDA accuracy (left), CPU time
(center) and Network Capacity C (right) with respect to various control parameters.

we presented above, we already evaluated the parameters that had to do with the system configuration
(e.g., effective network, dwell time and localization algorithms), but not the algorithmic parameters
of Grap that we carry out in this section.

The first control parameter experiment in Fig. 9 (left) studies the GDA distance parameter as
discussed in Subsection 4.2, which is the h(n) heuristic of the evaluation function f (n) of our A*-
based approach that estimates the cost from node n to each of the m virtual targets. We examined
three different h(n) heuristics: (i) L2 that calculates the Euclidean distance from n to m nodes; (ii)
G2 that calculates a graph distance by using the Dijkstra algorithm; and (iii) the greedy G1 heuristic
that finds the shortest path by using the (node) weights of the dependency graph DG (i.e., the self-
importance). The second control parameter experiment varies the number of virtual targetsm taken
into consideration at each iteration. The third control parameter experiment examines the lookahead
window parameter that represents the maximum distance in number of hops between the current
node and them nodes. The wno means that there is no constraint in the number of hops and therefore
the GDA approach finds them most popular virtual targets of the whole building.

The results of the first control parameter experiment in Fig. 9 (left set of parameters at each plot
- for various GDA distance heuristics) show that the proposed approach performs better when the
graph distance G2 estimation is used, since it provides about 74% better A than L2 and 16% better
accuracy than G1 utilizing less T and similar C, at the same time. This is due to the fact that the G2
heuristic can more easily adopt the constraints and explicit characteristics of an indoor environment
and can more easily provide a more representative distance cost between two indoor locations. The
variations on m of the second control parameter experiment in Fig. 9 (center at each plot) show that
GDA is slightly affected by this parameter and demonstrate a slight preference for anm that is neither
too high (e.g., m = 7) nor too low (e.g., m = 1). This is due to the fact that a high m means that GDA
will have a large number of goals and therefore it may divide the limited number of K nodes that
will be selected for prefetching into many paths and subsequently may result in a BFS-like behavior.
On the other hand, with a low K there is a high probability of selecting a wrong virtual target and
therefore prefetch nodes along a wrong direction. Finally, the third control parameter experiment
in Fig. 9 (right at each plot - variations of the lookahead window w) show that GDA prefers small
lookahead window w since this means that them virtual targets will be closer to the current location
of u at each iteration and therefore it would be much more easier for GDA to fix a wrong decision
(i.e., selecting a popular destination that is far away from the actual path that the user follows.)

6.7 Experiment 6: Real Prototype Evaluation
In the last experiment, we use our real prototype system on a Samsung Galaxy S3 (Android 4) using
an Exynos 4 Quad (GT-I9300). Particularly, we follow 20 random routes of 15m long each in the CS
UCY campus and we measure the accuracy and energy consumption. The energy consumption is

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1. Publication date: November 2017.

IoT Data Prefetching in Indoor Navigation SOAs 1:19

measured using PowerTutor, which according to [8] is 86% accurate. We utilize the same parameter
settings as in the previous experiments, i.e., dwell time K = 15, number of virtual targets m = 3,
lookahead window w = 3, effective network threshold θ = −40dBm and localization method =
WKNN. All messaging goes through the 802.11 Wi-Fi interface. Extensive simulation over multiple
smartphones was outside the scope of this work, even though we refer interested readers to our
prior work SmartLab [14], in order to assess the complex dimensions arising in testing extensively
smartphone applications on multiple real smartphone devices.

In respect to average accuracy, the results are comparable to our previous results and discussions,
since the accuracy varies between 3m and 10m. The energy consumption of our real prototype can
be considered reasonable since it consumes around 42.64J on average for 30 routes, which means
around 2J for each 15m long indoor navigation or 0.06% of a fully charged battery that is much less
than the 1.09% (≈ 35J) needed to request and download the wikipedia mobile site [26].

7 CONCLUSIONS AND FUTURE WORK
In this paper, we study the problem of prefetching the most important IoT data blocks from an
IIN-SOA to a mobile device, without knowing its user’s destination during navigation. Our proposed
framework, named Grap (Graph Prefetching), structurally analyzes in an offline phase the building
topology graphs to identify important areas inside building complexes (e.g., malls, hotels, campuses).
The identified “hotspots” subsequently become virtual targets to an online heuristic graph search
algorithm we developed, named Graph-Distance A*-based (GDA). We tested our Grap framework
with real datasets from our production prototype IIN-SOA, which reached over 100,000 real users,
and found Grap to be impressively accurate while retaining high performance levels (i.e., CPU
time, network capacity and energy consumption). Our prototype implementation validates that our
propositions are pragmatic and can easily make their way into future IIN-SOA.

In the future, we plan to investigate the trade-off between the CPU/network capacity and the
accuracy objectives in the context of Multi-Objective Optimization. We also plan to extend our
experimental evaluation into domain-specific field studies (e.g., involving health/hospitals, edu-
cation/universities) but also deal with more realistic evaluation scenarios that would require the
adaptation of the physical infrastructure behind our experiments (e.g., varying number of APs,
incorporating UWB transceivers or beacons). Finally, we intent to release our developed artifacts as
an open-source project.

REFERENCES
[1] T. Ahmed, T.B. Pedersen, T. Calders and H. Lu, “Online Risk Prediction for Indoor Moving Objects,” IEEE MDM,

2016.
[2] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari and M. Ayyash, “Internet of Things: A Survey on Enabling

Technologies, Protocols, and Applications,” IEEE Comm. Surv. Tutor., vol. 17, no. 4, pp. 2347–2376, 2015.
[3] L. Atzori, A. Iera and G. Morabito. “The Internet of Things: A survey,” Comput. Netw., vol. 54, iss. 15, pp. 2787–2805.

2010.
[4] C. Becker and F. Dürr “On location models for ubiquitous computing,” Personal and Ubiquitous Computing, vol. 9,

iss. 1, pp. 20–31, 2005.
[5] C. Bouras, A. Konidaris and D. Kostoulas, “Predictive prefetching on the web and its potential impact in the wide area,”

World Wide Web, Springer, vol. 7, no. 2, pp. 143–179, 2004.
[6] S. Brin and L. Page, “The Anatomy of a Large-Scale Hypertextual Web Search Engine,” ACM WWW, 1998.
[7] G. Chatzimiloudis, A. Konstantinidis, C. Laoudias and D. Zeinalipour-Yazti, “Crowdsourcing with Smartphones,” IEEE

Internet Computing, vol. 16, no. 5, pp. 36–44, 2012.
[8] M. Dong and L. Zhong. “Self-constructive high-rate system energy modeling for battery-powered mobile systems,”

ACM MobiSys, 2011.
[9] L. Ghouti and T. Sheltami and K. Alutaibi, “Mobility Prediction in Mobile Ad Hoc Networks Using Extreme Learning

Machines,” Procedia Computer Science, Elsevier, vol. 19, pp. 305–312, 2013.

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1. Publication date: November 2017.

1:20 Konstantinidis, A. et al.

[10] B. D. Higgins, J. Flinn, T. J. Giuli, B. Noble, C. Peplin and D. Watson, “Informed mobile prefetching,” ACM MobiSys,
2012.

[11] I-Y. Ko, H-G. Ko, A-J. Molina and J-H. Kwon, “SoIoT: Toward A user-centric IoT-based service framework,” ACM
TOIT, vol. 16, no. 2, pp. 8:1–8:21, 2016.

[12] A. Konstantinidis, G. Chatzimilioudis, D. Zeinalipour-Yazti, P. Mpeis, N. Pelekis and Y. Theodoridis, “Privacy-Preserving
Indoor Localization on Smartphones,” IEEE TKDE, vol. 27, iss. 11, pp. 3042–3055, 2015.

[13] A. Konstantinidis, G. Nikolaides, G. Chatzimilioudis, G. Evagorou, D. Zeinalipour-Yazti and P.K. Chrysanthis “Ra-
diomap Prefetching for Indoor Navigation in Intermittently Connected Wi-Fi Networks,” IEEE MDM, 2015.

[14] G. Larkou, C. Costa, P.G. Andreou, A. Konstantinidis and D. Zeinalipour-Yazti, “Managing Smartphone Testbeds with
Smartlab,” USENIX LISA, 2013.

[15] B. Li, J. Salter, A. G. Dempster and C. Rizos, “Indoor positioning techniques based on wireless lan,” 1st Intl. Conf. on
Wireless Broadband and Ultra Wideband Comm., pp. 13–16, 2006.

[16] S. Li, L-D. Xu and S. Zhao, “The internet of things: a survey,” Inf. Systems Frontiers, vol. 17, no. 2, pp. 243–259, 2015.
[17] T. M. Lim, C. K. Yeo, F. Lee and Q. V. Le, “Tmsp: Terminal mobility support protocol,” IEEE Transactions on Mobile

Computing, vol. 8, no. 6, pp. 849–863, June 2009.
[18] H. Lu, C. Guo, B. Yang and C.S. Jensen: “Finding Frequently Visited Indoor POIs Using Symbolic Indoor Tracking

Data,” EDBT, 2016.
[19] Q. Lv and P. Cao and E. Cohen and K. Li and S. Shenker, “Search and replication in unstructured peer-to-peer networks,”

ACM ICS, 2002.
[20] D. Lymberopoulos, J. Liu, X. Yang, ..., C. Laoudias, D. Zeinalipour-Yazti, Y.-K. Tsai, et. al., “A realistic evaluation and

comparison of indoor location technologies: Experiences and lessons learned,” IEEE/ACM IPSN, 2015.
[21] S. Papastavrou, G. Samaras, P. Evripidou and P. K. Chrysanthis, “A decade of dynamic web content: a structured survey

on past and present practices and future trends,” in IEEE Communications Surveys & Tutorials, vol. 8, no. 2, pp. 52–60,
2006.

[22] E. Pitoura and G. Samaras, “Data management for mobile computing,” Kluwer Academic Publishers, ISBN 0792380533,
1997.

[23] P. Prasithsangaree, P. Krishnamurthy and P. Chrysanthis, “On indoor position location with wireless LANs,” IEEE
PIMRC, 2002.

[24] M. Satyanarayanan and J.J. Kistler and P. Kumar and M.E. Okasaki and E.H. Siegel and D. Steere and C. Steere,
“Coda: A Highly available File System for a Distributed Workstation Environment,” IEEE Trans. on Computers, vol. 39,
pp. 447–459, 1990.

[25] E. Shriver and C. Small and K. A. Smith, “Why Does File System Prefetching Work?,” USENIX ATC, 1999.
[26] N. Thiagarajan, G. Aggarwal, A. Nicoara, D. Boneh and JP. Singh, “Who Killed My Battery?: Analyzing Mobile

Browser Energy Consumption,” WWW, 2012.
[27] O. Trullols-Cruces, M. Fiore and J. Barcelo-Ordinas, “Cooperative download in vehicular environments,” IEEE Trans.

on Mobile Comp., vol. 11, no. 4, pp. 663–678, 2012.
[28] M. Vögler, J. Schleicher, C. Inzinger and S. Dustdar, “A scalable framework for provisioning large-scale IoT deploy-

ments,” ACM Trans. on Internet Technology, vol. 16, no. 2, 2016.
[29] Y. Xia and C. K. Yeo, “Mobile internet access over intermittent network connectivity,” Journal of Network and Computer

Applications, vol. 40, pp. 126–138, 2014.
[30] J. Xiao, Z. Zhou, Y. Yi and L.M. Ni., “A Survey on Wireless Indoor Localization from the Device Perspective,” ACM

Comput. Surv., vol. 49, iss. 2, pp. 25:1–25:31, 2016.
[31] L-D. Xu, “Enterprise Systems: State-of-the-Art and Future Trends,” IEEE Trans. on Indu. Inf., vol. 7, iss. 4, pp. 1551–

3203, 2011.
[32] L. Yao, Q. Z. Sheng and S. Dustdar, “Web-Based Management of the Internet of Things,” in IEEE Internet Computing,

vol. 19, iss. 4, pp. 60–67, 2015.
[33] D. Zeinalipour-Yazti and C. Laoudias, “The Anatomy of the Anyplace Indoor Navigation Service,” ACM SIGSPATIAL

Special, ACM Press, vol. 9, pp. 3–10, 2017.
[34] D. Zeinalipour-Yazti, C. Laoudias, K. Georgiou and G. Chatzimiloudis, “Internet-based Indoor Navigation Services,”,

IEEE Internet Computing, vol. 21, iss. 4, pp. 54–63, 2017.
[35] Z. Zhang, “Routing in intermittently connected mobile ad hoc networks and delay tolerant networks: overview and

challenges,” IEEE Communications Surveys Tutorials, vol. 8, no. 1, pp. 24–37, 2006.
[36] Z. Zheng, P. Sinha and S. Kumar, “Alpha coverage: Bounding the interconnection gap for vehicular internet access,”

IEEE INFOCOM, 2009.

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1. Publication date: November 2017.

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 IoT-based IIN-SOA and Anyplace
	2.2 Prefetching and Mobile Connectivity
	2.3 Graph-based Search

	3 System Model & Problem Formulation
	3.1 System Model
	3.2 Research Goal and Metrics
	3.3 Baseline Approaches

	4 The Grap Framework
	4.1 Outline of Operation
	4.2 Graph Distance A* (GDA) Algorithm
	4.3 Performance Analysis

	5 Grap Prototype Implementation
	5.1 Grap Evaluator
	5.2 Grap Navigator

	6 Experimental Evaluation
	6.1 Methodology
	6.2 Experiment 1: Performance Evaluation
	6.3 Experiment 2: Dwell Time (K)
	6.4 Experiment 3: Effective Network ()
	6.5 Experiment 4: Localization Algorithms
	6.6 Experiment 5: GDA Sensitivity Analysis
	6.7 Experiment 6: Real Prototype Evaluation

	7 Conclusions and Future Work
	References

